skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lovi, Jacob M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 10, 2026
  2. The effects of atomic mass in terms of its zero-point vibrational energy, on molar volume, glass transition temperature Tg, and viscosity are studied in glassy and supercooled B2O3 liquids using boron isotope substitutions. The molar volume decreases and Tg and isothermal viscosity increase on the substitution of lighter 10B isotopes with the heavier 11B isotopes. These effects are argued to be a manifestation of the higher zero-point vibrational energy of the lighter isotope, which along with the anharmonicity of the potential well, results in a longer equilibrium inter-atomic distance and larger mean-square displacement with respect to that for the heavier isotope. The isotope effect on viscosity is increasingly enhanced as the temperature approaches Tg, which is shown to be consistent with the prediction of the elastic models of viscous flow and shear relaxation. 
    more » « less